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The Mayer f-function for purely hard particles of arbitrary shape satisfies 
f2(1, 2) = - f ( 1 ,  2). This relation can be introduced into the graphical expansion 
of the direct correlation function c(1, 2) to obtain a graphical expression for the 
case of exact coincidence, in position and orientation, of two identical hard 
cores. The resulting expression for e(1, 1 )+  1 contains only graphs G from c(1), 
the sum of irreducible graphs with one labeled point. Relative to its coefficient in 
c(1), G occurs in c(1, 1) with an additional factor Re, which is 1 for the leading 
graph in the expansion and of the form 2 - 2 L ( G )  for all other graphs. Here 
L(G) = 0, 1, 2 ..... is a nonnegative integer. Topological analysis is used to derive 
an expression for L(G) in terms of the connectivity properties of G. 

KEY WORDS:  Hard-particle fluids; direct correlation function; graphs; 
connected; irreducible graphs; coincidence of hard cores. 

1. I N T R O D U C T I O N  

The idea of using hard spheres to model physical systems is very old, with 
notable calculations carried out in the late 19th century by Boltzmann/1~ 
In the 1950s computer simulations provided the first quantitative results for 
the equation of state of a hard-sphere fluid. (2'3) Soon afterward, the 
remarkably successful scaled particle theory (SPT) of Reiss etal.  ~4) gave 
rather good agreement with the simulation pressures over an extended den- 
sity range. The idea of the SPT, slightly rephrased, is consideration of the 
configurational chemical potential A# of insertion of a hard sphere of 
arbitrary radius R into the fluid. The calculable limits of R = 0, R equal to 
the radius of a fluid particle, and R macroscopic provide benchmarks for 
interpolation. This work was further refined and applied by Reiss and 
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co_workers/5 8) A number of generalizations of the SPT to nonspherical 
hard particles have been proposed. (9,1~ 

Another approach to the equation of state is the calculation of the 
configurational Helmholtz free energy AA, and thus also A/~, by evaluation 
of the low-order cluster integrals by analytic, numerical, and Monte Carlo 
(MC) integration techniques (see Kilpatrick (11) for references). For hard 
spheres, these techniques, aided by the reformulation of the graphical 
expansion in terms of Ree-Hoover graphs (12-14) or overlap graphs (~5~ have 
provided good equations of state when used in the Pad6 approximant 
form. (~z14) Recently the MC integration has been applied to hard 
spheroids. (16) 

A third approach is the one of integral equations for pair distributions, 
notably the Percus-Yevick (~7) (PY) and hypernetted chain (18 23) (HNC) 
equations. For hard spheres there are analytic solutions of the PY 
equation (24'25) and numerical solutions of the HNC equation. (26) For non- 
spherical hard particles the numerical solution of these equations is dif- 
ficult. Recently such solutions of the PY and HNC equations for prolate 
spheroids have been obtained by Perera et aL ~27~ who compared the results 
to MC simulations. (28'29) 

A key ingredient of integral equations is the direct correlation function 
c(1, 2). It is a member of a hierarchy of functions c(1,..., s) whose leading 
terms s = 0 and 1 are closely related by 

c ~~ = - f l  AA, c(l  ) = - B  A#q (1) 

to the thermodynamic quantities AA and AlZq, which play the leading role 
in the SPT and cluster integral approaches. Here the labels i=  1, 2,..., are 
shorthand for the position ri, the orientation f2i, and species q(i) of particle 
i. As usual, /~ = 1/kT. 

In graphical expansion (3~ s) is the sum of all irreducible graphs 
on s.labeled points (LPs) and some or no field points (FPs). With an FP i 
we associate a factor of pq, the singlet density of species q(i), and 
integration over ri and s and summation over species q(i). The LPs 
represent fixed particles and carry an associated factor 1. The bonds con- 
necting points are f-bonds, defined below. Each graph occurs with a coef- 
ficient 1/a, where o- is the symmetry number. Irreducibility of a graph 
means the absence of articulation points (APs) and bridge points (BPs). 
APs and BPs are points whose deletion causes the graph to break into two 
or more fragments. If every fragment contains an LP, it is a BP; otherwise 
it is an AP. (3~ 

Much work has been done on the cavity function y(1, 2), which results 
from considering pair correlations with the hard repulsion of the pair 1, 2 
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canceled, so that the cores can interpenetrate. For the case of one core 
engulfing the other, including the case of coincident hard cores represented 
by y(1, 1), there is an explicit result in terms of the chemical potential of 
the engulfed species. (1~ 33) Unfortunately, this says little about integral 
equations, where y(1, 2) for core overlap does not enter, except in a purely 
formal sense in the process of deriving the integral equations. With regard 
to integral equations, a more useful result would be one for c(1, 1), which 
appears explicitly in the solutions. For the PY equation, there is a ther- 
modynamic result for c(1, 1), but this depends on the retention of only a 
restricted class of graphs. To date no such generally valid result for c(1, 1) 
had been given for hard-core systems. 

In the following I derive a general result for c(1, 1 ) in multicomponent 
hard-particle fluids. Unlike the result for y(1, 1), it is available only in 
graphical expansion, and it makes reference to the graphical expansion of 
c(1). Its practical utility may be limited to use as a criterion for judging the 
suitability of integral equations. The latter question is of paramount 
interest for fluids of very long or flat shapes, i.e., nematogens, where our 
ignorance of what works is nearly total, and integral equation results for 
moderate elongations are just beginning to appear. (27) The result makes it 
possible to convert the density expansion of AA obtained by evaluation of 
the cluster integrals (16) directly into the density expansion of c(1, 1). 

2. F O R M A L I S M  

2.1. Bonding Funct ions 

The calculation is based on the representation of correlation functions 
and related quantities by graphical expansions. (3~ We use only density 
expansions, in which all graphs are free of APs. The pair potential ~b(1, 2) 
appears in the bonds between pairs of graph points through the e-function 
and the Mayer f-function defined by 

e(1, 2 )=  exp[-~b(1, 2)/kT], f(1, 2 )=  e(1, 2 ) -  1 (2) 

where k is Boltzmann's constant and T is the temperature. In the graphs we 
deal with, the bonds are f-bonds, represented by a solid line between points 
i and j to indicate a factor off(i ,  j). An e-bond between i and j, indicated 
by a dashed line, is the sum of the f-bonded and the unbonded states of the 
pair, i.e., indifference with respect to f-bonding. Unless e-bond is specified, 
the terms bond and bonding always refer to f-bonds. Similarly, AP, BP, 
connectedness, and irreducibility always refer to graphs with f-bonds. 
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For the sake of compact notation, I introduce some composite bonds 
consisting of several pair e-bonds. Capital letters appearing as arguments of 
functions are used to denote sets of points. I reserve the symbol S for the 
set of s LPs labeled 1 ..... s. The symbol E(S) stands for the product of all 
possible e-bonds in the set S: 

E(S)=  [ I  e(i,j) for s~>2 (3) 
l < ~ i < j ~ s  

Similarly, E( W, X) stands for the product of all e-bonds going from a point 
in W to a point in X: 

E(W, X)=  [ [  l~ e(w, x) (4) 
w E  W x e X  

It is convenient to define two additional functions. By analogy with Eq. (2), 
define 

F(W, X)=E(W, X ) -  1 (5) 

For sets X containing at least two points, also define the asymmetric 
function G(W, X) by 

G ( W , X ) - - F ( W , X ) -  ~ F(W,x) (6) 
x E X  

In terms of f-bonding, E(W, X) contains all states of mutual bonding 
between the point sets W and X, while F(W, X) contains all mutual 
bonding states with at least one bond. The bonding function G( W, X) con- 
tains all bonding states such that at least two points of X are bonded to W. 
In the following applications, W is a set S of labeled points, which may be 
only a single point. 

2.2. Composite  Hard Cores 

In the following I use the well-known special properties of hard-core 
interactions. Let V(i) denote the space points included in the hard core of 
particle i. Then the e-function for a pair of particles interacting solely by 
hard-core repulsion is 

e (1 ,2)= if V(I)•V(2) ~ ~ (7) 

where ~ denotes the empty set. For the set of points W, we can define a 
composite hard core V(W) by 

v(w)= U V(w) (8) 
w ~ W  
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which is the union of the hard cores of the particles in the set, whether or 
not there is hard-core overlap. Then the composite E-functions satisfy an 
equation analogous to Eq. (7), namely 

E( W, X) = { Io } if V( W) c~ V( X) { =r } ~ (9) 

In the following we are concerned with the case where W = S, and the only 
core overlap is between one pair of S, labeled s -  1 and s. Then we have 

E(1 ..... s) -E(1,...,s-2, s - l w s )  for V(s-1)c~V(s)r  (10) 
e ( s  - 1, s )  

Here s - 1 w s indicates a fused particle with a hard core V(s - 1 ) w V(s). In 
particular, if V(s) is coincident with or contained in V(s- 1 ), then we have 

E(1 ..... s) 
E(1,..., s -  1) for V(s)cV(s-1)  (11) 

e ( s -  1, s) 

where the subset symbol c is defined to include the whole set or improper  
subset as one of the subsets. In the case at hand this corresponds to exact 
coincidence of two hard cores. 

Similarly, the E(S, X) satisfy 

E(1,...,s;X)=E(1 ..... s -2 ,  s - l w s ; X )  for V ( s - 1 ) m V ( s ) ~  (12) 

E(1 ..... s; X)= E(1,..., s -1;  X) for V(s)cV(s-1)  (13) 

2.3. Nonparal lel  Graphs and Correlat ion Functions 

The analysis proceeds by considering the functions 

n(S) = n(1 ..... s) (14) 

defined as the sum of all nonparallel graphs on s LPs and one or more 
FPs. These graphs are defined by the requirements (a) there are no bonds 
between pairs of LPs, (b) there are no APs, (c) every FP  can be reached 
from every other FP by a path o f f -bonds  and FPs without going through 
an LP. Requirement (c) may be restated as: the graph remains connected 
when all connections at the LPs are broken. 

Denote the subset of irreducible graphs in n(S) by b(S) and the com- 
plementary set of reducible graphs by q(S). For  s = 1, bridge points cannot 
occur, and all graphs in n(1) are irreducible, so that we have 

n(1)=b(1)=c(1) (15) 
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For s = 2, the decomposition 

n(1, 2 )=  b(1, 2 )+  q(1, 2) (16) 

is needed in analyzing the direct correlation function c(1, 2). For r with 
s >~ 3, a further analysis of q(S) in terms of the relation of BPs to the LPs 
is required. For s =  3, such an analysis has been given in the course 
of deriving integral equations involving triplet correlations. (34) In the 
following I restrict the discussion to c(1, 2). 

For subsequent manipulations and for the purpose of expressing the 
usual s-particle distribution functions in terms of the elementary graph 
function n(S), it is convenient to introduce two further quantities, z(S) and 
z*(S). We have 

z(1) =n(1),  z(1, 2 ) = n(1, Z)+n(1)+n(2) (17) 

z(1, 2, 3)=n(1,  2, 3)+n(1,  2)+n(1,  3)+n(2,  3) 

+ n(1) + n(2) + n(3) (18) 

and in general 

z (S)=  ~ n(H) (19) 
H c S  
H r  

The quantity z*(S) differs from z(S) by exclusion of the n(i). With m(X) 
denoting the number of points in any point set X, we have 

z*(S)= ~ n(H) for m(S)~> 2 (20) 
H c S  

m(H) ~ 2 

The expression for the s-particle distribution functions g(1,..., s) in terms of 
the nonparallel graph functions is well known. In the present notation it is 

g(S)=E(S)exp z*(S) (21) 

As a sum of graphs with f-bonds, g(S) consists of all graphs such that 
every FP is connected to at least one LP, and every connected subgraph of 
LPs and FPs is free of APs. A subset of these graphs is the subset of con- 
nected graphs. A further subset of the latter one is the subset of irreducible 
graphs with s LPs. The set of all irreducible graphs with s LPs labeled 
1 ..... s is c(1 ..... s). Here we consider only s = 2, where 

g(1, 2) = e(1, 2) e n~1'2) (22) 
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The subset of irreducible graphs is then given by 

c(1, 2) = e(1, 2) e n(1'2)- 1 - q(1, 2) (23) 

Although my primary aim is the derivation of an expression for 
c(1, 1), I begin by discussing the simpler problem of composite cores, 
engulfment, and coincidence for z(S) and n(S). This makes it possible to 
make contact with the known so-called zero-separation theorems (1~ 33) 
for the cavity function y(1, 2) = g(1, 2)/e(1, 2). 

3. C O N S T R U C T I O N  F R O M  TREES 

If one takes a graph in n(S) and deletes the LPs i = 1 ..... s with all their 
attached f-bonds f(i, x), where x is an FP, then one has left either a single 
FP or a connected graph F consisting of FPs and f-bonds. The original 
graph in n(S) is defined as belonging to F. My task is an analysis of the 
reverse process. Starting with a connected graph F on FPs, I wish to con- 
struct the set of all graphs in n(S) which belong to F, by adding f-bonds 
between F and the LPs. For  the case s = 2, I also wish to carry out such a 
construction for the irreducible subset of graphs, b(1, 2). Note that F and 
the LPs are distinguishable by their labelings, so that combinatorial 
problems do not arise. Given F with its correct coefficient l/o, all graphs in 
n(S) are obtained by taking all acceptable ways of adding f-bonds from 
E(S, F). The conditions that must be met for the graph in n(S) are 
(a) every LP must be bonded to F, and (b) there must be no APs. The 
prescription for meeting these conditions requires a preliminary discussion 
of the structure of the connected graphs on FPs. 

3.1. S t ruc ture  of Star -Trees  

The set of connected graphs on FPs consists of the subset of 
irreducible graphs or stars, and the set of trees of stars connected by 
sharing APs. Since I focus almost entirely on the connectivity, I refer to the 
connected graphs on FPs synonymously as the set of star-trees, including 
the stars as improper trees, and referring to the trees of two or more stars 
as proper trees. 

In the following it becomes essential to classify the component stars of 
a proper star-tree by the number of APs they contain. A star which 
contains n APs is called an n-star. The n-stars with n ~> 2 are classified as 
inner stars, while 1-stars are synonymously called outer stars of a proper 
star-tree. It will emerge that 1-stars and 2-stars play a special role in the 
analysis. Improper trees may be included in the classification as 0-stars. 
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The symbols A and B are reserved to denote the set of points in a 
1-star and 2-star, respectively. An added prime indicates that the AP(s) 
is to be omitted. Thus, A~, stands for the set of points in the kth  1-star 
with its single AP omitted. While A~ contains at least one point, B~ may 
be empty. The latter situation occurs when B k consists of two points 
connected by an f-bond.  

I use Y to denote the set of points in an improper tree and T to denote 
the points of a proper tree. For a proper tree T, U is the subset of points 
not contained in outer stars, each of the latter taken without its AP. Thus, 

U = T -  ~ A; (24) 
k 

where the sum runs over all outer stars. 

3.2. Bonding Functions L,(S, Y) and L,,(S, T) 

For  a given tree Y or T, Ln(S, Y) or Ln(S,T) is the sum of all 
products of f -bonds  connecting S with Y or T such that we produce a 
graph in n(S). Similarly, one can define bonding functions for the 
irreducible graph sum b(S) and for z(S). My primary interest here is in 
b(1, 2). However, I begin with the easier problem of n(S), which makes it 
possible to obtain results which imply the known zero-separation 
theorems. (1~ 

The bonding functions for n(S) require every LP in S to be bonded to 
the tree. For  this reason, it is simpler to consider first z(S), which allows 
unbounded LPs. Graphs in z(S) consists of some or no unbonded LPs and 
a single connected graph free of APs. Thus, the added bonds from S to the 
tree must fulfill the single requirement that no APs remain in the connected 
graphs with t ~< s LPs. There are three cases. 

For  the single point p, one needs simply at least one f -bond  from p to 
an LP, so that 

Lz(S, p)= F(S, p) (25) 

For  a star Y, at least two points of Y must be bonded to LPs, so that 

Lz(S, Y)= G(S, Y) (26) 

For a proper tree T, each outer star must be bonded to an LP by at least 
one point other than its AP ~ in order to destroy the role of e as an AP. 
Once this is done, no APs remain, so that there is indifference to bonding 
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of any other points in T. Indifference with respect to bonding of a point x 
is reflected in a factor E(S, x), so that 

Lz(S, T) = E(S, U) ~I F(S, A'~) (27) 
k 

From this result for z(S), it is easy to deduce the corresponding results for 
n(S). The inversion of Eq. (19) is a well-known combinatorial problem 
with the solution 

n(S)=  ~ (-1)m(S-mz(H) (28) 
H c S  
H ~  

From this it follows immediately that 

Ln(S,Q)= ~ ( - 1 )  m(s -mLz(S ,Q)  for Q = p ,  Y, o r T  (29) 
H c S  
Hv~ ~ 

3.3. Core Overlap Theorems 

In the partial results for Lz(S, Q), as given in Eqs. (25)-(27), the 
bonds from the LPs occur solely in the form of E(S, X), with X =  p, Y, U, 
A~, or a~A'k. Therefore, Eqs. (12) and (13) for composite cores apply 
unchanged to z(S), and we obtain the results 

z(1 ..... s )=z(1  ..... s - l w s )  for V(s-1)c~V(s)r  (30) 

z(1,...,s)=z(1,...,s-1) for V(s)=V(s-1) (31) 

The corresponding result for n(S) is obtained by using the inversion for- 
mula (29) and grouping terms according to whether they contain both 
s -  l and s, only s -  1, only s, or neither. For overlap of V(s- 1) and V(s) 
the result is 

n(1,..., s )=n(1  ..... s -  1 u s ) - n ( 1  ..... s -  1 ) - n ( 1  ..... s - 2 ,  s) 

for V(s-1)c~V(s)r  (32) 

For the special case of V(s) engulfing or coincident with V(s-1) this 
reduces to 

n(1 ..... s) = -n(1  ..... s - l )  for V(s-1)cV(s)  (33) 

Note that the roles of the two partners in the engulfment pair are opposite 
in z(S) and n(S). In the case of z(S), only the engulfing core is effective, in 
the case of n(S) it is the engulfed core. 
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Similar results for g(1 ..... s)/e(s- 1, s) follow by the use of Eqs. (10), 
(21), and 

z*(1,..., s ) =  z(1,..., s ) -  ~ z(i) (34) 
i = 1  

I quote only the result for engulfment or coincidence. Then 

g(1,..., s) 
-g (1 , . . . , s -1 )e  z~s) for V( )=V(s -1 )  (35) 

e ( s -  1, s) 

This is the familiar result ~1~ ~3) in terms of the configurational chemical 
potential of species q(s), when one recalls that 

z(1) = c(1) = -/~ A#q~l ~ (36) 

3.4. Bonding Functions and Pseudographs 

Equations (31) and (33) for engulfment or coincidence have a simple 
interpretation in terms of what I call pseudographs. Consider each E(S, X) 
as a product of e(i, x) and each e(i, x) expressed in terms off-bonds by 
Eq. (2). For engulfment or coincidence the relevant product o f f ' s  is 

f ( s -  1, x)f(s,  x) = - f ( s -  1, x) for V(s -  1) = V(s) (37) 

If one treats the product on the left-hand side as the legitimate f-bond on 
the right-hand side, then z(S) and n(S) have pseudographical expansions in 
which one LP of the engulfment pair is ineffective in the sense of having no 
incident f-bonds, while all incident f-bonds refer to the core of the surviving 
partner. When Eq. (37) applies, the pseudographical expansions of n(1,..., s) 
and z(1,..., s) look just like the graphical expansions of -n(1,..., s - 1 )  and 
z(1,..., s -  2, s). 

The functions n(S) lead to a particularly simple result, because only 
connectedness and absence of APs are demanded. When we go to subsets 
of n(S) with conditions involving the BPs, then the situation is much more 
complicated. The simplest case is s = 2, where the only subset to be con- 
sidered is b(1, 2), the set of irreducible graphs in n(1, 2). Even here, the 
general case of engulfment leads to the appearance of pseudographs with 
both types off-bonds,  i.e., referring to V(1) and V(2). For this reason, I 
consider only the simplest case, coincidence of two identical hard cores. 

When 1 and 2 have identical cores, only one type off-bond enters the 
LP 1 = 2 for the coincident configuration. We then have an expansion of 
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b(1, 1) in pseudographs which look like graphs in b(1) but occur with a 
coefficient which differs from the proper coefficient 1/a. Define 

R b = ratio of coefficient of pseudograph in b(1, 1) to 

coefficient of corresponding graph in b(1) (38) 

For the ratio Rn, defined in an analogous fashion for n(1, 1) and n(1), we 
have Rn= - 1  for all graphs in n(1). We shall see that Rb depends on 
topological properties of the tree to which the graph in b(1) belongs. For 
this reason, the coincidence theorem for b(1, 1) is available only in 
graphical expansion. 

The coincidence theorem for c(1, 2) is expressed in terms of a ratio R~, 
defined as in Eq. (38) with c(1, 1) and c(1) replacing b(1, 1) and b(1). The 
ratio Rc is related simply to Rb. From Eq. (23) we have for coincidence of 
cores 

c(1, 1)= - l - q ( 1 ,  1)= - l - n ( 1 ,  1)+b(1,  1) (39) 

If we use n(1, 1)= - n ( 1 ) =  -c(1),  this becomes 

e(1, 1)= - 1  +c (1 )§  1) (40) 

Since c(1)= b(1), this means that we have simply 

Rc= Rb + 1 (41) 

In c(1, 1) there are two terms independent of Rb. The leading term in the 
density expansion is contributed by f(1, 2), which yields f(1, 1) = - 1. The 
linear term in densities comes from the triangle off-bonds on LPs 1 and 2 
and one FP, with coefficient 1. For 1=2 ,  we have f(1, t ) = - 1  and 
f ( 1 3 ) f ( 1 2 ) =  -f(13) ,  so that we obtain the leading term in e(1), a single 
f-bond connecting 1 and the FP, with the correct coefficient 1. Here R c = 1, 
because there is no contribution from Rb, since graphs in b(1, 2) require at 
least two FPs. For all higher orders in the densities, R b makes a nonzero 
contribution to Rc. 

4. COINCIDENCE THEOREM FOR b ( 1 , 2 )  AND c ( 1 , 2 )  

4.1. Calculation of R b 

We proceed by constructing the bonding function Lb(1, 2; Y) and 
Lb(1, 2; T) and comparing the case of 1 = 2 with Lb(1, Y) and Lb(2 , Y). 

822,,'52/5-6-16 
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The latter two quantities are obtained by specializing Lz(1, Y) and Lz(1, T) 
to S = I :  

Lb(1, Y)= G(1, Y) (42) 

Lb(1, T)=E(1 ,  U) 1~ F(1, A;) (43) 
k 

I consider first a set of topologically equivalent bondings from 1, and 
then construct the set of all bondings from 2 such that only the irreducible 
graphs in b(1, 2) are produced. For improper trees the calculation is very 
simple. The LP 1 must be bonded to at least two points of Y; the sum of all 
such bondings is G(1, Y). The same applies to the LP 2, resulting in a fac- 
tor G(2, Y). The result of evaluating the product in the limit V(1)= V(2) is 

G(1, Y)G(2, Y)11_2 = -G(1,  Y)+ ~ f(1, x ) f (1 ,  y) (44) 
x E Y  
y c Y  
xv~  y 

In the sum, each pair occurs twice, compared to once in G(1, Y). Therefore 
we may rewrite Eq. (44) as 

Lb(1,1; Y)= -Lb(1, Y)+ 2 ~ f(1, x) f(1, y) (45) 
pairs(x, y) 

x , y ~  Y 

This provides the answer for Rb in the case of an improper tree Y. The 
pseudographs in b(1, 1) occur with a factor of - 1  relative to the 
corresponding graphs in b(1 ), except for minimally, i.e., doubly LP-bonded 
graphs, which have - 1 + 2 = 1. Thus, 

1 if Yis minimally LP-bonded (46) 
Rb= --1 otherwise 

For proper trees T a much longer calculation is required. First one must 
define a set of topologically equivalent bondings from 1. After adding two 
or more bonds from 1 to T, one forms a new graph T(1). In T(1 ), a certain 
part of T, denoted by T1, is irreducibly bonded to 1. In other words, the 
LP 1, T1, and the bonds connecting them form a star, which is denoted by 
T~(1). The subtree T 1 is either a single component-star of T, a connected 
subtree of T, or all of T. An equivalent set of  bondings is one that produces 
the same T~. Any connected subtree of T can be made into T1 ; the set of all 
bondings that does so is Lb(1, T1), as determined by the status of the com- 
ponent stars in T~, not in T. 

The second step of the calculation, where one constructs all bondings 
from 2 that produce irreducible graphs, depends on the status of the star 
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TI(1 ) in the star-tree T(1). One must distinguish the three possible cases 
(1) TI(1) is an inner star of T(1), (2) TI(1 ) is all of T(1), and (3) Tl(1) is 
an outer star of T(1). 

Case 1 is easily disposed of. The bonding from 1 to T1 contains at least 
two f-bonds from 1 to T~. But since T1 is part of an inner star of 7"(1), the 
reducibility or irreducibility of a graph is indifferent to the bonding from 2 
to T~. Therefore, the bonding from 2 contains a factor E(2, T1), which is 
incompatible with the bonding from 1 to T, in the limit 1 = 2, so that the 
product is zero. Therefore, case 1 makes no contribution to L(t ,  1; T). 

Case 2 is relatively simple. The bonding from 1 to T is just Lb(1, T). 
Since T(1) is now a star, the set of all bondings from 2 to T is just G(2, T). 
Evaluation of the product for 1 = 2 leads to 

Lb(1, T) G(2, T) I~_2= --Lb( 1, T ) + E ( U ) ~  1~ F(1, A~) ~ f (1 ,  a) 
m k r  a ~ A m  

(47) 

In the second term on the right, consider the ith term in the sum over m. It 
contains exactly all graphs in Lb(1, T) such that the ith outer star is 
minimally, i.e., singly, bonded to the LP 1. Therefore, a graph with n singly 
bonded outer stars appears exactly n times in the sum over m. Therefore, 
the contribution of case 2 to Rb is exactly 

- l + N~ ( 4 8 )  

where N1 is the number of minimally bonded outer stars. As implied by 
Eq. (47), only bonding from points other than the AP are counted in deter- 
mining minimal bonding. 

In case 3, TI(1) is an outer star of T(1). This implies that T consists of 
two connected subtrees T1 and T2 which share a single AP, denoted by ~. 
The sets of equivalent bondings from the LP 1 to T1 depend on the status 
of component stars in T1, rather than in T. When we break off T2, it is 
possible to have reduction of an n-star in T to an ( n -  1)-star in T1. This 
occurs when, out of m component stars attached to e, one goes into T1, the 
other m -  1 into 7"2, so that c~ is no longer an AP in T1. Only 0-stars and 
1-stars play a special role in the bonding from 1. Therefore, we need to 
single out only the cases where n -  1 - -0  or 1. In the light of this, case 3 
must be broken down into (3a) one 1-star in T ~ 0 - s t a r  in T1, (3b) one 
2-star in T--* 1-star in TI, (3c) neither of the above. 

Case 3a occurs when 1 is bonded to a single outer star Am of T. The 
set of all such bondings is G(1, Am). Note that in this case bonding to the 
AP of Am is allowed. The bonding from 2 required to produce an 
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irreducible graph is unaffected by the bonding from 1. Therefore, the sum 
of bondings from 2 is just Lb(2, T). For 1 = 2 this becomes 

G(1, Am) Lb(1, T)]I=2 = - L b ( 1 , T ) + E ( 1 , U )  I~ F(1, A~) 
k ~rn 

f(1, a) 
a~A~  

(49) 

After summing over all outer stars of T, we obtain a contribution 

-MILb(1, T)+E(1, U)~ [~ F(1, A~) ~ f(1, a) (50) 
m k ~ m  aEAm 

where M1 is the number of outer stars in T. The second term in Eq. (50) is 
exactly the same as in case 2, Eq. (48). Therefore, the contribution of 
case 3a to Rb is 

- M 1  + N1 (51) 

Case 3b occurs when ~, the AP between TI and T2, is just an ordinary 
point, i.e., not an AP, in T1. This star is denoted by B; it is a 2-star in T, 
but all attachments at ~ are broken off when T2 is detached from T1. The 
bondings from 1 which render TI(1) irreducible are given by the bonding 
function 

Lb(1, T1)=E(1, U~-B")F(1, B") [I F(1, A~) (52) 
Ak c TI 

where 

B"=B'+~, Ui =U~Ti for i = 1 , 2  (53) 

The sum of bondings from 2 that produce irreducible graphs is 

E(2, U2) FI2, TI - ~) I~ F(2, A~,) (54) 
A k c  7"2 

The product of the two factors in Eqs. (53) and (54) in the limit 1= 2 
simplifies to 

-L1(1, T) + E(1, U -  B') I-I r(1, A;) (55) 
k 

where the product runs over all outer stars A~. The second term contains 
all graphs in Lo(I, T) such that the special 2-star B is not LP-bonded, not 
counting bonding to the APs in B. 

The result in Eq. (55) must be summed over all partitions of T into T1 
and T2 such that a 2-star B in T is degraded into a 1-star in T1. There is 
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one such partition for each AP of each 2-star in T. Therefore, the number 
of such partitions, denoted by M2, is twice the number of 2-stars in T. 
Upon summing over all 2-stars B m in T, one obtains the following con- 
tribution to the bonding function Lb(1, 1; T): 

-M2Lb(1, T)+  2 l~ F(1, A ~ ) ~ E ( I ,  U-B'm) (56) 
k m 

The ith term in the sum over m counts twice all graphs such that B~ is not 
bonded to the LP 1. A graph with n unbonded 2-stars is counted 2n times. 
Therefore, the contribution of case 3b to R b is 

- M  2 + 2N2 (57) 

where N2 is the number of minimally LP-bonded, i.e., LP-unbonded, 
2-stars. 

The final case is 3c, where all 1-stars of T1 are 1-stars in T. The set of 
bondings from 1 is given by the bonding function 

Lb(1, T , )=E(1 ,  U,) 1-[ F(1, A~,) (58) 
A k  ~ T1 

The set of bondings from 2 such that an irreducible graph is produced is 

E(2, U2) F(2, T, - ~) l~ F(2, A~,) (59) 
A k ~  T 2 

For 1 = 2, the product of the two factors in Eqs. (58) and (59) is just 

--Lb(1, T) (60) 

Such a term is obtained from each partition of a tree T into subtrees TI 
and T2 subject to the condition (3c). Let this number be M 3. Then the 
contribution of case 3c to Rb is 

--M3Lb(1, T) (61) 

In summing up the contributions to R b from cases 1 through 3c, the M i 
occur in the form 

M = M1 + M2 + M3 (62) 

All the Mt are numbers of partitions of the tree T into T1 and 7"2. Their 
sum exhausts all partitions of T into two nonempty subtrees. By adding up 
all contributions, we obtain the desired result 

Rb =2(N1 + N 2 ) -  ( M +  1) (63) 
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and as a consequence of Eq. (41), 

Rc = 2(N1 + N2) - M 

Werthe im 

(64) 

A formula which encompasses R b for both proper trees T and stars Y is 

Rb= Z N -  (M + 1) (65) 

where N is the number  of minimally bonded n-stars for n ~< 2. In the case of 
a star Y, the number  M of partitions is 0, and N is 1 for minimal bonding 
of Y, and 0 otherwise. 

4.2. Range of  Values  o f  R b and R c 

Before discussing the range of values that R b c a n  take on, it is of 
interest to note the special status of the component  star consisting of two 
points connected by an f-bond.  Since bonds to APs are not counted, this 
star is necessarily LP-unbonded when it occurs as a 2-star. Similarly, when 
it occurs as an outer star in T, it necessarily occurs minimally, i.e., singly 
LP-bonded in b(1). 

The formula (63) for Rb contains both positive and negative terms. 
The number of partitions M is obtained by summing partitions over APs. 
An m-AP is one with m attached stars. At an AP of multiplicity m, i.e., an 
m-AP, there are 

M(~) = 2 m(~) - -  2 (66) 

partitions of T into nonempty subtrees T1 and T2. Therefore we have 

M =  ~ [2 m ( ~ - 2 ]  (67) 
APs 

It is easy to see that arbitrarily large values of M can be constructed 
without increasing N, so that there is no lower bound for Rb. On the other 
hand, additional minimally bonded 1-stars and 2-stars cannot be added 
without increasing the number of APs, so that we expect to have an upper 
bound o n  R b. In the following we deduce it by building up more complex 
trees from simpler ones. 

The simplest proper trees consist of a simple chain of n ~>2 stars, 
connected at 2-APs. If all the stars are minimally bonded, then we have 

N =n,  M = 2 ( n -  1), R b = 2 N - ( M + I ) = I  (68) 

All other trees may be obtained from the simple chain by successive 
addition of component  stars. In each step a new 1-star can be attached to 
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the tree in one of two ways: (1) at a new 2-AP converted from an ordinary 
point of a component star, and (2) at an existing m-AP, converting it to an 
(m + 1)-AP. 

The algebraically largest change in one of these operations occurs 
when the added 1-star is minimally bonded to the LP. To find the largest 
R b we need to consider only the minimally bonded case. 

In operation 1, we gain + 2 in 2N for adding an additional 1-bonded 
1-star, and gain - 2  in - 2 M  for adding an additional 2-AP. In addition, 
we have the change due to the change in status of the star with the new 
AP. This latter change is 0, except for the case in which the initial 
minimally LP-bonded 2-star becomes a 3-star, so that we gain - 2  due to 
the loss of one minimally LP-bonded 2-star. Therefore, operation 1 results 
in a net change of 0 or - 2 .  

In operation 2, we still gain + 2  for an additional minimally LP- 
bonded 1-star. The change in - M  due to the number of partitions in 
converting one m-AP to an (m + 1)-AP is 

(2 m -  2) - ( 2  m + l  - 2) = - 2  m (69) 

Therefore, the net change in operation 2 is at most - 2 ,  for m = 2. 
It follows that the maximum value of Rb is 1, and this value occurs 

only for minimally LP-bonded stars and chains of minimally LP-bonded 
stars. 

4 .3 .  E x p l i c i t  R c 

We have already noted that Rc = 1 for the leading graph in c(1). For  
all higher graphs, where Rb contributes, Rc is of the form 

R C = 2 - 2L (70) 

where the nonnegative integer L is given by 

L = - N +  ~ [-2 m(~') t - l ]  (71) 
APs 

Figure 1 displays the graphs in c(1) belonging to trees on two, three, 
and four points. In the reduced form of display the LP 1 and its attached 
bonds are omitted. Instead, the LP-bonded points of the tree are indicated 
by solid circles. The values of Re are shown in a separate column. Through 
this order, the only values of Rc are 2 and 0. Negative values of Rc appear 
in the next order, with trees on five points. 

Two standard approximations which may be compared are the PY 
and HNC integral equations. In these approximations g(l ,  2 ) - c ( 1 ,  2) is 
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Fig. 1. Graphs in c(1) with two, three, and four field points and their associated factors R c. 
The LP 1 and its attached f-bonds are omitted; the LP-bonded field points are indicated by 
solid circles. The coefficient to the left of each graph is 1/tr. The value to the right is R c. 

exact th rough  graphs  with two FPs  for any pair  interact ion ~b(1,2). 
Because g(1, 1 ) = 0  whenever  there is infinite repulsion for coincidence, 
c(1, 1) is exact  to the same order. However ,  for the purely hard  interact ions 
under  considera t ion here, it is found that  bo th  integral  equat ions  are exact 
for c(1, 1) th rough  terms with three field points. This m a y  be a t t r ibuted to 
the occurrence of the factor  R e = 0  for the fully L P - b o n d e d  triangle in 
Fig. 1. 

Figure  2 displays the errors  commi t ted  by the PY and H N C  equat ions  
in the lowest nonexact  order  of  c(1, 1), consisting of pseudographs  with 
four FPs.  In  each case the omi t ted  pseudographs  can be summed  into a 
single pseudograph  by using e-bonds.  The  errors  for the two 
approx ima t ions  have opposi te  signs. 
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Fig. 2. The lowest order pseudographs omitted from c(1, 1) in the PY (upper line) and HNC 
(lower line) equations. Individual pseudographs are given in the reduced form of Fig. 1; their 
sum is shown in full. The dashed lines are e-bonds. 

A noteworthy feature of the PY approximation is the following: all 
pseudographs with two or more FPs in cpv(1, 1) have Rc= 2, and occur 
with their correct coefficients 2/a. This can be seen from the charac- 
terization of the graphs in cpf(1, 2). It contains all convex polygons whose 
vertices are the LPs 1 and 2 and all the FPs. All adjacent pairs on the 
periphery are mutually bonded; 1 and 2 are adjacent. All noncrossing sets 
of interior bonds are allowed. All of these graphs have symmetry number 1. 
Coalescing 1 and 2 produces pseudographs which correspond to graphs in 
c(1); these satisfy the same conditions as the graphs in cpy(1, 2) except for 
the presence of only one LP. Their symmetry number is 1 or 2. We count 
the number of graphs in cpy(1, 2) that correspond to a given graph in c(1), 
distinguishing the cases of coalescence and noncoalescence of f-bonds. 
Because of the prohibition against bond crossing, this amounts to counting 
the number of partitions of the ordered set of LP-bonded FPs on the 
periphery, going from 1 to 2. For  m bonds from 1 = 2, there are m - 1 such 
partitions in the case of noncoalescence, because the bonds on the 
periphery are uniquely assigned. For the case of coalescence, there are m 
such partitions, with a factor of - 1  for the relation f 2 =  _ f  The total is 
( m - 1 ) - m =  - 1 .  There is an additional factor of - 1  from f(1,  1 )=  -1 .  
Finally, interchange of the labels 1 and 2 corresponds to distinct sets of 
graphs if a = 1 in c(1). For  graphs in c(l)  with a = 2, the corresponding 
graphs in c(1, 2) are either invariant under the interchange or go into each 
other in pairs. Hence, we have Rc = 2 in both cases. 

5. C O N C L U S I O N  

I have derived the coincidence theorem for c(1, 2) for multicomponent 
hard-particle fluids. Only future calculations for fluids of nonspherical hard 
particles will make it possible to assess the utility of this result. 
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Some questions remain. First, it would be useful to have an analogous 
result for the Ree-Hoover graphs. While it is not difficult to do this 
explicitly in low order, it appears to be extraordinarily difficult to prove a 
general result for the Ree-Hoover graphs. Finally, can a fruitful connection 
be made with the overlap graph formalism used by Kratkyr 

Generalization to hard cores with added attraction is ruled out in 
most cases, because the coalescence of two f-functions is not an f-function. 
The exception to this rule occurs for theories developed recently to deal 
with the case of site-site bonding. ~35) Here multiple bonding of a site is 
forbidden, so that coalescence of two equivalent attraction bonds cannot 
occur for coincidence. In these cases, generalizations can be carried out. 
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